233 research outputs found

    Ion-implanted lanthanum fluoride waveguides

    No full text
    The effects of He+ and H+ implantation into LaF3 substrates have been investigated at both room temperature and 77 K. At room temperature the surface of the samples becomes black, possibly due to chemical reduction effects, but at low temperature the crystals remain clear and a refractive index change is observed which produces a surface waveguide. The dark mode spectra of these guides have been recorded using the prism coupling technique, and their refractive index profiles have been deduced from the spacing of these modes. The ion implantation produces a thin optical barrier layer of low refractive index at the end of the ion range. This paper discusses the use of multiple-energy implantation to produce a broad optical barrier in order to reduce the tunnelling losses of the guides, and subsequent thermal annealing to reduce absorption and scattering losses caused by colour centre formation in the electronic stopping surface region of the guides. It is concluded that either single- or multiple-energy He+ implants can be ideally used to form waveguides, for applications in the blue/UV or red/IR wavelength regions, respectively, with losses of a few dB/cm

    Rayleigh noise mitigation in DWDM LR-PONs using carrier suppressed subcarrier-amplitude modulated phase shift keying

    Get PDF
    We demonstrate a novel Rayleigh interferometric noise mitigation scheme for applications in carrier-distributed dense wavelength division multiplexed (DWDM) passive optical networks at 10 Gbit/s using carrier suppressed subcarrier-amplitude modulated phase shift keying modulation. The required optical signal to Rayleigh noise ratio is reduced by 12 dB, while achieving excellent tolerance to dispersion, subcarrier frequency and drive amplitude variations

    Gain reversal studies in photorefractive waveguides

    No full text
    We report on low-loss photorefractive BaTiO3 H+ implanted waveguides exhibiting reversal of two-beam-coupling gain direction, caused by induced colour centres. The anomalous two-beam-coupling gain has been investigated as a function of the input beam ratio

    1.9”m operation of a Tm:Lead germanate glass waveguide laser

    No full text
    We report what we believe to be the first planar-technology waveguide laser in the 2-”m region. Laser operation of the 3H4 to 3H6 transition of Tm3+ ions in a lead germanate glass host has been observed in an ion-implanted planar waveguide

    Ion size effects on thermoluminescence of terbium and europium doped magnesium orthosilicate

    Get PDF
    We would like to thank the support of the Fundamental Research Funds for the Central Universities of China, the National Science Foundation of China (No. 11205134) and Beijing Higher Education Young Elite Teacher Project (YETP0640). The refurbishment of the RLTL system at St. Andrews was funded by NERC grant NE/H002715/1.Thermoluminescence (TL) and radioluminescence (RL) are reported over the temperature range 25–673 K from MgSiO:Tb and MgSiO:Eu. The dominant signals arise from the transitions within the Rare Earth (RE) dopants, with limited intensity from intrinsic or host defect sites. The Tb and Eu ions distort the lattice and alter the stability of the TL sites and the peak TL temperature scales with the Tb and Eu ion size. The larger Eu ions stabilize the trapped charges more than for the Tb, and so the Eu TL peak temperatures are ∌20% higher. There are further size effects linked to the TL driven by the volume of the upper state orbitals of the rare earth transitions. For Eu the temperatures of the TL peaks are wavelength dependent since higher excited states couple to distant traps via more extensive orbits. The same pattern of peak temperature data is encoded in RL during heating. The data imply that there are sites in which the rare earth and charge stabilizing defects are closely associated within the host lattice, and the stability of the entire complex is linked to the lattice distortions from inclusions of impurities.Publisher PDFPeer reviewe

    ``Plug and play'' systems for quantum cryptography

    Get PDF
    We present a time-multiplexed interferometer based on Faraday mirrors, and apply it to quantum key distribution. The interfering pulses follow exactly the same spatial path, ensuring very high stability and self balancing. Use of Faraday mirrors compensates automatically any birefringence effects and polarization dependent losses in the transmitting fiber. First experimental results show a fringe visibility of 0.9984 for a 23km-long interferometer, based on installed telecom fibers.Comment: LaTex, 6 pages, with 2 Postscript figures, Submitted to Applied Physics Letter

    Error Prevention Scheme with Four Particles

    Full text link
    It is shown that a simplified version of the error correction code recently suggested by Shor exhibits manifestation of the quantum Zeno effect. Thus, under certain conditions, protection of an unknown quantum state is achieved. Error prevention procedures based on four-particle and two-particle encoding are proposed and it is argued that they have feasible practical implementations.Comment: 4 pages, RevTeX, references updated and improved protocol adde

    Phase measurements with weak reference pulses

    Get PDF
    Quantum state discrimination for two coherent states with opposite phases as measured relative to a reference pulse is analyzed as functions of the intensities of both the signal states and of the reference pulse. This problem is relevant for Quantum Key Distribution with phase encoding. We consider both the optimum measurements and simple measurements that require only beamsplitters and photodetectors.Comment: 5 pages, 5 figures. I apologize for this boring pape
    • 

    corecore